Publications Papers Statistical Methods for the Quantitative Genetic Analysis of High-Throughput Phenotyping Data

Statistical Methods for the Quantitative Genetic Analysis of High-Throughput Phenotyping Data Part of the Methods in Molecular Biology book series

IWATA Hiroyoshi

Apr. 5, 2022

The advent of plant phenomics, coupled with the wealth of genotypic data generated by next-generation sequencing technologies, provides exciting new resources for investigations into and improvement of complex traits. However, these new technologies also bring new challenges in quantitative genetics, namely, a need for the development of robust frameworks that can accommodate these high-dimensional data. In this chapter, we describe methods for the statistical analysis of high-throughput phenotyping (HTP) data with the goal of enhancing the prediction accuracy of genomic selection (GS). Following the Introduction in Sec. 1, Sec. 2 discusses field-based HTP, including the use of unoccupied aerial vehicles and light detection and ranging, as well as how we can achieve increased genetic gain by utilizing image data derived from HTP. Section 3 considers extending commonly used GS models to integrate HTP data as covariates associated with the principal trait response, such as yield. Particular focus is placed on single-trait, multi-trait, and genotype by environment interaction models. One unique aspect of HTP data is that phenomics platforms often produce large-scale data with high spatial and temporal resolution for capturing dynamic growth, development, and stress responses. Section 4 discusses the utility of a random regression model for performing longitudinal modeling. The chapter concludes with a discussion of some standing issues.

Gota Morota, Diego Jarquin, Malachy T. Campbell & Hiroyoshi Iwata

Methods in Molecular Biology (2539)

doi: 10.1007/978-1-0716-2537-8_21

Author

IWATA Hiroyoshi

  • Professor
  • Iwata Group
  • The University of Tokyo
  • Environmental Responses
  • Modelling
  • Field science